| | Form Approved
OMB No. 0704-0188 | | | | | |--|------------------------------------|---------------------------------------|--|--------------------------|--| | Public reporting burden for maintaining the data needs | this collection of information is | estimated to average 1 hour per re | esponse, including the time for re | viewing instructions, se | earching existing data sources, gathering and | | including suggestions for re | ducing this hurden to Departm | ant of Defense Weshington Head | sito confinents regarding this but | uen estimate or any ot | her aspect of this collection of information, | | collection of information if it | does not display a currently v | alid OMB control number. PLEAS | hstanding any other provision of I
E DO NOT RETURN YOUR FOR | aw, no person shall be | is and Reports (0704-0188), 1215 Jefferson Davis
subject to any penalty for failing to comply with a
DDRESS | | 1. REPORT DATE (| DD-MM-YYYY) | 2. REPORT TYPE Technical Papers | | | DATES COVERED (From - To) | | 4. TITLE AND SUBT | TITLE | | | 5 | a. CONTRACT NUMBER | | | | | | 5 | b. GRANT NUMBER | | | | | | 5 | c. PROGRAM ELEMENT NUMBER | | 6. AUTHOR(S) | | | | 5 | d. PROJECT NUMBER | | | | | | 5 | 2303
e. TASK NUMBER | | | • | | • | | M 208
f. Work Unit NUMBER | | | | | | - | | | | | (S) AND ADDRESS(ES) | | | PERFORMING ORGANIZATION | | Air Force Research AFRL/PRS | h Laboratory (AFM) | | | | | | 5 Pollux Drive | | | | | | | Edwards AFB CA | 93524-7048 | | | | | | 9. SPONSORING / M | ONITORING AGENC | Y NAME(S) AND ADDRES | SS(ES) | | D. SPONSOR/MONITOR'S | | | • | | | A | CRONYM(S) | | | h Laboratory (AFMO | C) | | | | | AFRL/PRS 5 Pollux Drive | | | | 11 | 1. SPONSOR/MONITOR'S | | Edwards AFB CA | 93524-7048 | | | j | NUMBER(S) | | | AVAILABILITY STAT | | | | i | | 12. DISTRIBUTION / | AVAILABILITY STAT | EMENI | | | | | Approved for publi | ic release; distributio | | | | | | ripproved for publi | ic release, distribution | on unimited. | | | | | 13. SUPPLEMENTAR | RY NOTES | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | 14. ABSTRACT | | | | | The second secon | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | • | | | | 1121 | 085 | | 15. SUBJECT TERMS | } | | | 11601 | | | | | | | | | | 6. SECURITY CLASS | SIFICATION OF: | | 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE | | | | × . | OF ABSTRACT | OF PAGES | PERSON Leilani Richardson | | . REPORT | b. ABSTRACT | c. THIS PAGE | | | 19b. TELEPHONE NUMBER | | Unclassified | Unclassified | Unclassified | (A) | | (include area code)
(661) 275-5015 | | | | | | L | | 62 semate items are well. Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 FOYGN-93-C-0005 V Sprendsheet MEMORANDUM FOR PRR (Contractor Publication) FROM: PROI (TI) (STINFO) 4 March 1999 SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0049 Jerry Boatz et al., "Experimental and Theoretical Characterization of the Oxygen-coordinated Donor-Adducts of COCl₂, COClF and COF₂ with AsF₅ and SbF₅" Journal article (Public Release) Experimental and Theoretical Characterization of the Oxygen-coordinated Donor-Acceptor Adducts of COCl₂, COClF and COF₂ with AsF₅ and SbF₅ Berthold Hoge, †§ Jerry A. Boatz‡ and Karl O. Christe†,‡,* Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, and Air Force Research Laboratory, Edwards Air Force Base, California 93524 **Abstract** When reacted with an excess of the corresponding carbonyl halides, AsF₅ and SbF₅ from the following 1:1 adducts: COCl₂•AsF₅, COCl₂•SbF₅, COClF•AsF₅, COClF•SbF₅, COF₂•AsF₅ and COF₂•SbF₅. All adducts are unstable at ambient temperature, and their dissociation enthalpies were determined from the dissociation pressure curves. Vibrational and multinuclear NMR spectra and theoretical calculations show that all compounds are oxygen-coordinated donor-acceptor adducts, and that the strengths of the oxygen-bridges increase from COF₂ to COCl₂ and from AsF₅ to SbF₅. Introduction In the course of an investigation of halocarbonyl cations, 1 it became necessary to study the competing Lewis base-Lewis acid interactions of the dihalocarbonyl compounds, COCl₂, COClF and COF₂, with AsF₅ and SbF₅. Although the individual dihalocarbonyl and Lewis acid molecules are well characterized, little is known about their interactions.² For COCl₂, no reports on the AsF₅/COCl₂ system were found, and the only report on the SbF₅/COCl₂ system consists of a brief comment³ that with a fivefold excess of SbF₅ in SO₂CIF solution at -78 °C a new signal was observed in the ¹³C NMR spectrum, which was correctly attributed to the COCl⁺ cation. Other Lewis acids, which were studied in connection with COCl₂, $include \ BF_3, \ BCl_3, \ AlCl_3, \ AlBr_3, \ GaCl_3, \ SnCl_4, \ SbCl_5, \ MoCl_6, \ WCl_6, \ and \ PtCl_4,^2 \ but \ only \ for \ AlCl_5, \ MoCl_6, M$ DISTRIBUTION STATEM Approved for Public Release Distribution Unlimited 20021121 005 1 AlCl₃ ^{4,5} and possibly SbCl₅ ^{4,6} evidence was presented for the existence of oxygen-coordinated 1:1 donor-acceptor adducts. For COCIF, the only reports on an interaction with Lewis acids are two NMR studies^{3,7} with SbF₅ in SO₂CIF solution. The results from these studies indicate the presence of an oxygen-coordinated donor-acceptor adduct at low temperatures and halogen exchange at higher temperatures. For COF₂, the presence of thermally unstable, oxygen-coordinated donor-acceptor complexes with SbF₅ and AsF₅ were first demonstrated by low-temperature ¹⁹F NMR measurements,⁷ and subsequently confirmed by low-temperature Raman spectroscopy.⁸ However, no physical properties were reported for these adducts, and no reports could be found on other COF₂•Lewis acid adducts. ## **Experimental Section** Materials and Methods. Carbonyl chloride (Matheson), COF₂ (PCR Research Chemicals), and AsF₅ (Ozark Mahoning) were used as received. Antimony pentafluoride (Ozark Mahoning) was distilled prior to use. The COClF was prepared by a literature method.¹¹ The volatile materials were handled in a stainless steel vacuum line equipped with Teflon-FEP U-traps, 316 stainless steel bellows seal valves, and a Heise pressure gauge. Nontyvolatile materials were handled in the dry nitrogen atmophere of a glove box. Raman spectra were recorded on a Cary model 83 GT using 1.5 w of the 488 nm exciting line of an Ar ion laser and flame sealed Pyrex tubes as sample containers. A previously described device was used for the recording of the low-temperature spectra. Infrared spectra were recorded on a Midac model M FTIR spectrometer. NMR spectra were measured on a Varian Model Unity 300 MHz NMR spectrometer equipped with a 5 mm variable-temperature broad band probe. Sealed capillaries, which were filled with acetone-d₆ as lock substance, TMS as ¹³C reference and CFCl₃ or C₆H₅CF₃ as ¹⁹F reference, were placed inside the NMR tubes. For the dissociation pressure measurements, the 1:1 adducts of AsF₅ and SbF₅ with the carbonyl halides were preformed in a Teflon-FEP ampule, which was directly connected to a Heise pressure gauge. The equilibrium dissociation pressures were established for each temperature, approaching the equilibria from both sides, i.e., higher pressures and lower pressures. The thermochemical properties were derived in the same manner as previously described.¹² The method used for the tensiometric titration (vapor pressure-composition isotherm) of the AsF₅-COF₂ system has previously been described.⁴ Preparation f COF₂•AsF₅. Arsenic pentafluoride (3.75 mmol) and COF₂ (40.0 mmol) were combined in a . "" o.d. Teflon-FEP ampule at -196 °C. The mixture was stirred at -78 °C for 1 h with a magnetic s tring bar, resulting in a suspension of a white solid in liquid COF₂. The excess of COF₂ was pumped off at -126 °C, leaving behind the white, solid COF₂•AsF₅ adduct in quantitative yield. The adduct melts in the range of -45 to -42 °C. Dissociation pressure (temperature [°C], pressure [mm]): (-100, 2), (-95, 4), (-90, 7), (-85, 13), (-81, 20), (-75, 38), (-71, 58), (-70, 66), (-66, 98), (-65, 108), (-64, 119), (-63, 131), (-62, 140), (-60, 168), (-57, 211), (-55, 253). NMR (SO₂CIF, -60 °C): COF₂•AsF₅: δ(¹³C) 137.8 ppm; ¹J(CF) 330 Hz; δ(¹⁹F)-16 ppm. COF₂: δ(¹³C) 130.0 ppm; ¹J(CF) 313 Hz; δ(¹⁹F)-23 ppm. **Preparation of COF₂•SbF₅**. A mixture of SbF₅ (16.8 mmol) and COF₂ (40.0 mmol) was reacted and the resulting white, solid 1:1 adduct isolated as described for COF₂•AsF₅. The yield of COF₂•SbF₅ was quantitative. **Preparation of COCIF**•AsF₅. A mixture of AsF₅ (1.7 mmol) and COCIF (30.2 mmol) was stirred at -78 °C for 1 h. The excess of COCIF was pumped off at -110 °C, leaving behind COCIF•AsF₅ (1.7 mmol) as a white, solid powder melting in the range -42 to -39 °C. Dissociation pressure (temperature [°C], pressure [mm]): (-87, 3), (-84, 4), (-82, 5), (-80, 6), (-79, 7), (-78, 8), (-77, 9), (-76, 10), (-75, 11), (-74, 14), (-73, 16), (-72, 18), (-71, 20), (-70, 22), (-69, 25), (-68, 28), (-67, 32), (-66, 35), (-65, 39), (-64, 44), (-63, 50), (-62, 56), (-61, 62), (-60, 68), (-59, 76), (-58, 85), (-57, 94), (-56, 104), (-55, 117), (-54, 128), (-53, 140), (-52, 157), (-51, 170), (-50, 192), (-49, 224), (-48, 247), (-47, 275), (-46, 298), (-45, 320), (-44, 342), (-43, 363), (-42, 380). Preparation of COCIF•SbF₅. A mixture of SbF₅ (2.3 mmol) and COCIF (15.6 mmol) was reacted as described for COCIF•AsF₅, resulting in the quantitative formation of the white, solid COCIF•SbF₅ adduct. NMR (SO₂CIF, -60 °C): COCIF•SbF₅: $\delta(^{13}C)$ 163.8 ppm; $^{1}J(CF)$ 383 Hz; $\delta(^{19}F)$ 73.9 ppm. COFCI: $\delta(^{13}C)$ 142.0 ppm; $^{1}J(CF)$ 368 Hz; $\delta(^{19}F)$ 59.7 ppm. Dissociation pressure (temperature [°C] pressure [mm]): (-43, 3), (-40, 9), (-38, 11), (-36, 14), (-34, 19), (-29, 35), (-25, 54), (-23, 70), (-20, 96), (-16, 139), (-15, 152), (-13, 173), (-12, 187), (-11, 194), (-10, 200). **Preparation of COCl₂•AsF₅**. A mixture of AsF₅ (12.0 mmol) and COCl₂ (30.0 mmol) was stirred at -78 °C for 1 h. The excess of COCl₂ was pumped off at -85 °C, leaving behind 3.2g of a white solid (weight calcd for 12.0 mmol of COCl₂•AsF₅ = 3.226 g), melting at -20 \pm 2 °C. NMR (SO₂ClF, -60 °C): COCl₂•AsF₅: δ (13C) 155.9 ppm. COCl₂: δ (13C) 143.7 ppm. Dissociation pressure (temperature [°C], pressure [mm]): (-63, 5), (-60, 9), (-58, 12), (-51, 22), (-44, 49), (-43, 59), (-42, 66), (-40, 85), (-38, 104), (-37, 115), (-35, 143), (-32, 186), (-29, 230), (-28, 260), (-27, 292), (-26, 330), (-25, 375), (-24, 421), (-22, 481). Preparation of COCl₂•SbF₅. Antimony pentafluoride (4.3 mmol) was dissolved at -78 °C in 5 mL of liquid COCl₂. After 5 min the solution became turbid and a precipitate formed. After 1.5 h, the excess of COCl₂ was pumped off at -78 °C, leaving behind 4.3 mmol of COCl₂•SbF₅ in the form of a white powder. Dissociation pressure and NMR data could not be measured due to rapid F-Cl exchange resulting in COClF formation. Computational Methods. The optimized geometries, vibrational spectra and NMR chemical shifts of the O-coordinated carbonyl halide •MF₅(M = As, Sb) adducts were calculated using density functional methods. The B3LYP hybrid functional¹³ and the Stevens, Basch, Krauss, Jasien and Cundari effective core potentials and the corresponding valence double-zeta basis sets¹⁴ were used. The basis set was augmented with a diffuse s+p shell¹⁵ and a single Cartesian d polarization function on each atom.¹⁶ These calculations, hereafter denoted as B3LYP/SBK+(d), were performed using Gaussian 94 and 98.¹⁷ The calculated Hessian matrices (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetry-adapted internal coordinates for further analysis with the program systems GAMESS¹⁸ and Bmtrx.¹⁹ ### Results and Discussion Synthesis and Properties of the $COX_2 \cdot MF_5(X = Cl, F; M = As, Sb)$ Adducts. Both SbF_5 and AsF_5 form with the an excess of either $COCl_2$, COFCl or COF_2 exclusively O-coordinated 1:1 donor-acceptor complexes (1). $$MF_5 + COX_2$$ $COX_2 \cdot MF_5$ (1) $(X = F, Cl; M = As, Sb)$ The 1:1 compositions were established by the observed material balances and for the COF₂/AsF₅ system by a tensimetric titration (vapor pressure-composition isotherm)⁴ at -78 °C which gave evidence only for a 1:1 adduct. The resulting adducts are white solids which are thermally unstable and decompose reversibly to the starting materials, except for the COCl₂/SbF₅ system for which rapid irreversible fluorine-chlorine exchange is observed (2).¹¹ $$COCl2 \cdot SbF5 \longrightarrow COClF + "SbF4Cl"$$ (2) The oxygen-bridged nature of these adducts was established by vibrational and multinuclear NMR spectroscopy and the results from the theoretical calculations. Only for COCIF with at least a threefold excess of SbF₅, does the formation of ionic salts containing the ClCO⁺ cation become energetically more favorable (3).¹ $$COClF + 3SbF_5 \longrightarrow ClCO^+Sb_3F_{16}$$ (3) The preferential formation of oxygen-coordinated 1:1 donor-acceptor adducts in these systems is in accord with the previous Raman study of the COF₂•MF₅ (M = As, Sb) systems,⁸ a ¹⁹F NMR study of the COClF•SbF₅ system,⁷ and a tensimetric and IR spectroscopic study of the COCl₂/AlCl₃ system.⁴ **Thermochemical Properties**. Based on the vapor pressure data given in the Experimental Section, plots of log P versus T⁻¹ for the heterogenous equilibria (4) and (5) give straight lines, $$COX_2 \cdot AsF_{5(s)} \longrightarrow COX_{2(g)} + AsF_{5(g)}$$ (4) $$COClF \cdot SbF_{5(s)} \longrightarrow COClF_{(g)} + SbF_{5(s)}$$ (5) which can be described by the following equations: $$COCl_2 \cdot AsF_5(210-251 \text{ °K}): log P (mm) = -2486.13/T(\text{°K}) + 12.5768$$ $COClF \cdot AsF_5(186-231 \text{ °K}): log P (mm) = -2092.67/T(\text{°K}) + 11.649$ $COF_2 \cdot AsF_5(173-218 \text{ °K}): log P (mm) = -1767.12/T(\text{°K}) + 10.5084$ $COClF \cdot SbF_5(230-263 \text{ °K}): log P (mm) = -3038.9/T(\text{°K}) + 13.98$ The thermochemical properties, derived from these data by standard procedures, ¹² are summarized in Table 1. Literature values were used for the required heats of formation of AsF_5 , ²⁰ SbF_5 , ²¹ and the carbonyl halides. ²² Table 1 shows that the stability of the $COX_2 \cdot MF_5$ adducts decreases from SbF_5 to AsF_5 , as expected for the decrease in Lewis acidity, and from $COCl_2$ to COF_2 , as expected from a decreasing basicity of the oxygen with increasing electron density withdrawal by the more electronegative fluorine ligands. The decrease in the dissociation energy ΔH_d° from $COClF \cdot AsF_5$ to COCIF•SbF₅ should not be mistaken as an indication of a weaker adduct. The decrease in ΔH_d° is caused by the fact that at the investigated dissociation temperatures the SbF₅ decomposition product is a solid and not a gas. Therefore, the value of ΔH_d° is only one half of that expected for the formation of two moles of gas from one mole of solid. The slopes of the log P versus T⁻¹ curves, which are independent of the number of moles of gas in the decomposition products, reflect the expected stability trends, i.e., COCl₂•AsF₅. > COClF•AsF₅ > COF₂•AsF₅ and COClF•SbF₅ > COClF•AsF₅. The same stability trend is also displayed by the extrapolated temperature values at which the adducts would reach a dissociation pressure of one atmosphere (see Table 1). A comparison of the data of Table 1 with the previously reported dissociation pressure of 440 mm at 25 °C for COCl₂•AlCl₃ suggests that the stability of the COCl₂•AlCl₃ adduct is significantly higher than that of COCl₂•AsF₅. **NMR-Spectra**. The results of our ¹³C and ¹⁹F NMR study are summarized in Table 2. In agreement with a previous observation, ⁷ difficulties were encountered in observing well resolved signals for some of the systems at low temperatures due to exchange phenomena. Table 2 shows that on formation of the donor-acceptor adducts both the ¹³C and ¹⁹F signals of the free carbonyl halides are shifted to lower fields, as expected from a deshielding of these nuclei by the electron withdrawing effect of the Lewis acids. These shifts vary from about 5 to 20 ppm and appear to be larger for the stronger Lewis acid SbF₅. The magnitudes and directions of these shifts were confirmed for the COF₂•AsF₅ adduct by our theoretical calculations at the B3LYP/SBK+(d) level of theory using the GIAO method (see Table 2). The previously reported^{3,7} NMR data are for the most part ambiguous. Thus, the report³ on the COClF•SbF₅ adduct in SO₂ClF at -80 °C listed only ¹³C data with a wide shift range of 150-175 ppm which do not permit a meaningful comparison with the signal of free COClF. The other previous report⁷ dealt only with the ¹⁹F spectra of COF₂•SbF₅, COFCl•SbF₅ and COF₂•AsF₅ in SO₂ClF solution and also contained some ambiguities. Thus, for COF₂•AsF₅ no signal for coordinated COF₂ was observed at -100 °C, leading to the incorrect conclusion that even at this low temperature complexation must be incomplete. Furthermore, for a concentrated COCIF/SbF₅ solution at -80 °C, only signals due to free COF₂ and COF₂•SbF₅ were observed, while for a dilute solution at -95 °C a signal at 59.9 ppm was attributed to COCIF•SbF₅. However, this shift is almost identical to that of 59.7 ppm found in our study for free COCIF and is quite different from that of 73.9 ppm, found by us for the COCIF•SbF₅ adduct. The only previously well established shift due to complexation appears to be that of 21.7 ppm for the COF₂ - COF₂•SbF₅ pair at -100 °C in SO₂CIF solution, which has been included in Table 2. It supports our conclusion that the stronger Lewis acid SbF₅ deshields the fluorine ligands of the coordinated carbonyl halides more strongly than AsF₅. Vibrational Spectra and Theoretical Calculations. Vibrational spectra are well suited to distinguish between ionic salts and covalent donor-acceptor adducts.^{1,23} As shown by the valence bond structures (6), the C-O and C-X bond orders and, therefore, also their stretching frequencies $$\begin{array}{c} (+) \\ X \\ C - \underline{O} | \cdots MF_5 \end{array}$$ $$\begin{array}{c} (-) \\ X \\ \overline{O} | \cdots MF_5 \end{array}$$ $$\begin{array}{c} (+) \\ X = C = \underline{O} \\ \end{array}$$ $$\begin{array}{c} (+) \\ X = C = \underline{O} \\ \end{array}$$ $$\begin{array}{c} (+) \\ X = C = \underline{O} \\ \end{array}$$ $$\begin{array}{c} (+) \\ X decrease and the C-X stretching frequencies increase, compared to the free COX₂ molecule. Furthermore, a COX⁺SbF₅X⁻ salt should exhibit only 18 normal modes, while a covalent donor-acceptor adduct should possess 24. The observed low-temperature Raman spectra of the solid 1:1 complexes of Cl₂CO and ClFCO with AsF₅ and SbF₅ are shown in Figures 1 and 2, and the observed frequencies are summarized in Tables 3 and 4. The large number of observed Raman bands, their frequency shifts relative to the free carbonyl halides,²⁴ and the excellent fit with the calculated frequencies and intensities (see Tables 3 and 4) leave no doubt that these complexes are O-coordinated donor-acceptor adducts. Traditionally, the vibrational spectra of this type of covalent donor-acceptor adducts have been analyzed in terms of their separate components in their original point groups, ignoring the bridge modes and the splittings of degenerate modes caused by the symmetry lowering in the adducts. This approach has generally been quite useful and has permitted the analysis of the gross features of the spectra, particularly when the donor-acceptor interactions are relatively weak and the splittings of the degenerate modes are small. However, a rigorous analysis of the finer details of the observed spectra requires a treatment in the correct point group of the adduct, as shown in Table 3. The resulting agreement between the observed and calculated spectra of COCl₂•AsF₅ is very good. The fact that the observed carbonyl stretching frequency is lower and the CCl, stretching frequencies are higher than those calculated indicates that in the condensed phase the interactions between the carbonyl halides and the Lewis acids are stronger than those predicted for the free gaseous adducts. Therefore, the calculated optimized geometries, shown in Figure 3, are expected to exhibit somewhat longer M-O and shorter C-O bonds than those expected for the condensed phase. The theoretical results furthermore predict that the modes due to the M-O bridge should occur below 100 cm⁻¹ and, hence, justify the traditional approach of neglecting the bridge modes in a vibrational analysis. Finally, it should be noted, that our normal coordinate analyses show that, contrary to the previous assignments⁸ and those generally given for closely related C₄, MF₄F species, ^{25,26} the frequencies of the MF₅ deformation modes decrease in the following order: $\delta \text{scissor MF}_4$ in plane > δFMF_4 > $\delta \text{umbrella MF}_4$ > $\delta \text{asym MF}_4$ in plane. The observed Raman spectra of $COCl_2 \cdot MF_5$ (M = As, Sb) agree very well with the calculations, except for two extra bands observed for $COCl_2 \cdot SbF_5$ at 442 and 346 cm⁻¹. These bands occur in the Sb-Cl region and are tentatively attributed to some halogen exchange between $COCl_2$ and SbF_5 which is known¹¹ to occur rapidly at slightly elevated temperatures. For the COCIF•MF₅ adducts, two conformers are possible because either the fluorine or the chlorine ligand of COCIF could be oriented towards the MF₅ group. The two conformers differ only very little in energy (~0.1 kcal/mol) and their calculated vibrational spectra are almost identical. Therefore, the observed Raman spectra do not allow to distinguish between the two conformers, and the ones with the fluorines pointing toward the MF₅ groups were chosen for our analyses (see Table 4). The MF₅ bands in their COCIF adducts agree well with those of the corresponding COCl₂ adducts, but the deviations between the observed and calculated bands for the COCIF part of the adducts are larger than those for the COCl₂ adducts. For the COF₂•MF₅ adducts, good quality Raman spectra have previously been reported⁸ by Chen and Passmore, and their experimental data are compared with our calculations in Table 5. Again, the overall agreement is very satisfactory. A comparison of the relative changes of the carbonyl halide stretching frequencies within the COCl₂•MF₅, COFCl•MF₅ and COF₂•MF₅ series shows that the strength of the adducts increases from COF₂ to COCl₂ and from AsF₅ to SbF₅, i.e., with increasing basicity of the donor and increasing acidity of the acceptor. Hence, COCl₂•SbF₅ is the strongest and COF₂•AsF₅ the weakest adduct within this series. ### Conclusion Even with strong Lewis acids, such as AsF₅ or SbF₅, the carbonyl halides, COCl₂, COFCl and COF₂, form exclusively O-coordinated donor-acceptor adducts and no ionic salts. The stability of the adducts increases with increasing basicity of the donor, i.e., from COF₂ to COCl₂, and with increasing acidity of the acceptor, i.e., from AsF₅ to SbF₅. This conclusion is strongly supported by thermochemical measurements, vibrational and multinuclear NMR spectroscopy and theoretical calculations. Acknowledgement. The authors thank Drs. J. Sheehy and G. Olah for their support and one of us (B.H.) the Deutsche Forschungsgemeinschaft for a stipend. The work at USC was supported by the National Science Foundation and that at the Air Force Research Laboratory by the Propulsion Directorate. The computational work was supported in part by a grant of Cray T916 time from the Army Research Laboratory Department of Defense Computing Center and a grant of IBM SP time from the Maui High Performance Computing Center under the sponsorship of the Air Force Research Laboratory. #### References - † University of Southern California - ‡ Air Force Research Laboratory - § Current address: Institute of Inorganic Chemistry, University of Cologne, Germany - (1) Christe, K. O.; Hoge, B.; Boatz, J. A.; Prakash, G. K. S.; Olah, G. A.; Sheehy, J. A. J. Am. Chem. Soc. in press. - (2) For a recent review see: Ryan, T. A.; Ryan, C.; Seddon, E. A.; Seddon, K. R. *Phosgene and Related Carbonyl Halides*; Topics in Inorganic and General Chemistry, Monograph 24; Clark, R. J. H. Ed. Elsevier: Amsterdam, 1996. - (3) Prakash, G. K.S.; Bausch, J. W.; Olah, G. A.; J. Am. Chem. Soc. 1991, 113, 3203. - (4) Christe, K.O. Inorg. Chem. 1967, 6, 1706. - (5) Huston, J. L. J. Inorg. Nucl. Chem. 1956, 2, 128. - (6) Dehnicke, K. Z. Anorg. Allgem. Chem. 1961, 312, 237. - (7) Bacon, J.; Dean, P. A. W.; Gillespie, R. J. Canad. J. Chem. 1971, 49, 1276. - (8) Chen, G. S. H.; Passmore J. Chem. Soc. Dalton, 1979, 1257. - (9) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24, 3 - (10) Miller, F. A.; Harney, B. M. Appl. Spectrosc. 1969, 23, 8. - (11) Hoge, B.; Christe, K. O. J. Fluor. Chem.. - (12) (a) Christe, K. O.; Guertin, J. P. Inorg. Chem. 1965, 4, 905. (b) Christe, K. O.; Sawodny, W. Inorg. Chem. 1967, 6, 1783 and 1969, 8, 212. - (13) Becke, A. D. Chem. Phys. 1993, 98, 5648. - (14) (a) Melius, C. F.; Goddard, W. A. Phys. Rev. A. 1974, 10, 1528. - (b) Kahn, L. R.; Baybutt, P.; Truhlar, D. G. J. Chem. Phys. 1976, 65, 3826. - (c) Krauss, M.; Stevens, W. J. Ann. Rev. Phys. Chem. 1985, 35, 357. - (d) Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026. - (e) Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. Can. J. Chem. 1992, 70, 612. - (f) Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555. - (15) The diffuse s+p function exponents used for Sb, As, Cl, F, O, and C were 0.0259, 0.0287, 0.0483, 0.1076, 0.0845, and 0.0438, respectively. - (16) The d function exponents used for As, Sb and Cl were 0.293, 0.211 and 0.75, respectively. An exponent of 0.8 was used for F, O, and C. - (17) (a) Gaussian 94, Revision E. 2, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc. Pittsburgh, PA, 1995. - (b) Gaussian 98, Revision A. 4, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.D.; Kudin, J. N.; Strain, M.c.; Farkas, O.; Tomasi, J.; Barone, V.; Cossie, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liaschenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople J. A. Gaussian, Inc., Pittsburgh PA, 1998. - Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. - (19) Bmtrx version 2.0; Komornicki, A.; Polyatomics Research Institute: Palo Alto, CA 1996. - (20) Barin, I.; Knacke, O.; Kubaschewski, O. "Thermochemical Properties of Inorganic Substances," Supplement, 1977, Springer Verlag. - (21) Bougon, R.; Bui Huy, T.; Burgess, J.; Christe, K. O.; Peacock, R. D. J. Fluor. Chem.1982, 19, 263. - "JANAF Interim Thermochemical Tables," The Dow Chemical Co., Midland, Mich.,1965, and subsequent revisions. - (23) Lindquist, I. "Inorganic Adduct Molecules of Oxo-Compounds," Anorganische und Allgemeine Chemie in Einzeldarstellungen, Band IV, Becke-Goehring, M. Ed.; Academic Press Inc., New York, 1963. - (24) (a) Shimanouchi, T. J. Phys. Chem. Ref. Data 1977, 6, 993, and references cited therein. (b) Shimanouchi, T. "Tables of Molecular Vibrational Frequencies, Consolidated Volume 1," NSRDS-NBS39, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 1972, and references cited therein. - (25) Siebert, H. "Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie," Anorganische und Allgemeine Chemie in Einzeldarstellungen, Band VII, Becke-Goehring, M. Ed.; Springer Verlag, Berlin Heidelberg, New York, 1966. - (26) Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A," Fifth Edition, John Wiley & Sons, New York, 1997. Table 1. Thermochemical Data for the Dissociation of the $X_2CO_{\underline{\bullet}}MF_5$ Donor-Acceptor Adducts and Their Heats of Formation. | | ΔH _d ° ^a kcal/mol | T(1 atm) b °C | P ₂₉₈ c atm | ΔF° ₂₉₈ d
kcal/mol | ΔS° ₂₉₈ e cal/deg mol | $\Delta H^{\circ}_{f298}(X_2CO \cdot AsF_5)^f$ kcal/mol | |-------------------------------------|---|---------------|------------------------|----------------------------------|----------------------------------|---| | Cl ₂ CO•AsF ₅ | 22.75 | -16.8 | 22.78 | -2.882 | 85.98 | -370.81 | | ClFCO•AsF ₅ | 19.15 | -34.5 | 56.15 | -3.951 | 77.49 | -416.61 | | F ₂ CO•AsF ₅ | 16.17 | -41.5 | 50.19 | -3.818 | 67.05 | -464.33 | | ClFCO•SbF₅ | 13.91 | 0.6 | 8.07 | -0.826 | 49.41 | -433.15 | ^aEnthalpies of dissociation, calculated from the slope of the log P vs T⁻¹ curves. ^bExtrapolated temperatures at which the dissociation pressures of the solid adducts would reach a dissociation pressure of 760 mm. ^cExtrapolated dissociation pressures at 298°K. ^dValues for the free energy change at 298 °K. ^eValues for the entropy changes at 298 °K. ^fStandard heats of formation of the solid adducts using the dissociation enthalpies of this work and the following literature values for the heats of formation: $\Delta H_{f\ 298}^{\circ}(COCl_{2(g)}) = -52,600$; $\Delta H_{f\ 298}^{\circ}(COFCl_{(g)}) = -102.00$; $\Delta H_{f\ 298}^{\circ}(COF_{2(g)}) = -152.700$; $\Delta H_{f\ 298}^{\circ}(AsF_{5(g)}) = -295.461$; $\Delta H_{f\ 298}^{\circ}(SbF_{5(l)}) = -317.248$ kcal/mol. Table 3. Calculated (B3LYP/SBK+(d) Vibrational Frequencies and Observed Raman Spectra of the COCl₂·MF₅ (M=As, Sb) Adducts and their Analyses Based on the Point Groups of the Adducts and the Individual Donor and Acceptor Molecules | assis | enments, appro | x mode descript | frea. a | cm ⁻¹ , intensities ^a — | | | |-----------------------------------|-------------------|---|-------------|---|-------------|---------------------| | usoignments, approx mode descript | | COCl ₂ ·AsF ₅ | | COCl ₂ ·SbF ₅ ° | | | | | | | | | | | | MF ₅ | COCl ₂ | COCl ₂ ·MF ₅ | obsd | calcd | obsd | calcd | | C_{4V} | C_{2v} | C _s | Ra | (IR)[Ra] | Ra | (IR)[Ra] | | | | | | | | | | | $v_1(A_1)1827$ | ν(A')νc=o | 1610[33] | 1768(671)[43] | 1587[14] | 1718(740)[29] | | | $v_4(B_1)849$ | v ₂ (A')vas CCl ₂ | 978[11] | 896(460)[9.7] | 989[3.4] | 930(430)[6.1] | | $v_7(E)$ | | $\int v_3(A')vas MF_4$ | 770[4] | 734(127)[.35] | 708[2] | 667(90)[2.2] | | | | $\begin{cases} v_3(A')vas MF_4 \\ v_{16}(A'')vas MF_4 \end{cases}$ | 733[1] | 736(152)[.09] | | 667(114)[.13] | | $v_1(A_1)$ | | ν ₄ (Α')ν MF' | 757[44] | 742(153)[8.3] | 683[22] | 665(114)[5.5] | | $v_2(A_1)$ | | V ₅ (A')vs MF₄in phase | 698[100] | 663(1.7)[30] | 654[100] | 617(5.7)[34] | | | $v_2(A_1)567$ | $V_6(A')$ vs CCl_2 | 660[52] | 597(8.4)[16.4] | 676[66] | 623(.27)[3.9] | | $V_4(B_1)$ | | $v_{17}(A'')$ vs MF ₄ out of phase | 615[15] | 597(.21)[2.8] | 608[16] | 577(.34)[2.3] | | | $v_6(B_2)580$ | $v_{18}(A'') \delta$ MOCCl out of plane | 592[2] | 582(3.3)[.02] | 600sh | 585(3.3)[.08] | | | $v_5(B_1)440$ | $v_7(A') \delta$ MOCCl in plane | 538[22] | 471(.25)[4.6] | 528[9] | 484(2.7)[4.1] | | $V_3(A_1)$ | | $v_8(A') \delta \text{ sciss MF}_4$ | 402[19] | 403(.03)[1.6] | 303[.21] | 307(.12)[1.5] | | $\nu_8(E)$ | | $\int v_{19}(A'') \delta FMF_4$ out of plane | 391[4] | 380(47)[.26] | 286[8] | $\int 287(53)[.34]$ | | | | $V_9(A')$ δ FMF ₄ in plane | 380[11] | 379(42)[.33] | 279[4] | 283(46)[.18] | | | $v_3(A_1)285$ | $v_{10}(A') \delta sciss CCl_2$ | 360[33] | 308(46)[4.2] | 394[37] | 322(2.7)[5.1] | | $v_6(B_2)$ | | $v_{11}(A') \delta$ umbrella MF ₄ | 328[15] | 331(83)[2.4] | 260[2] | 262(141)[.17] | | ν ₉ (E) | | $\begin{cases} v_{12}(A') \delta \text{ as MF}_4 \text{ in plane} \\ v_{20}(A'') \delta \text{ as MF}_4 \text{ in plane} \end{cases}$ | 304[29] | 276(.88)[1.7] | 236[16] | 221(.90)[1.3] | | | | $\int \nu_{20}(A'') \delta$ as MF ₄ in plane | 238[11] | 278(.63)[.84] | nua-da | 233(.48)[.42] | | | | $v_{2i}(A") \delta$ wag $COCl_2$ | 181[14] | 165(.20)[.61] | 190[21] | 165(.20)[.85] | | | | $v_{13}(A') \delta \operatorname{rock} COCl_2$ | 140[13] | 125(1.2)[.55] | 146[22] | 134(8.4)[.91] | | $v_5(B_1)$ | | $V_{22}(A") \delta$ pucker MF ₄ | | 115(0)[0] | | 119(0)[.01] | | | | $v_{14}(A') vM-O$ | | 74(15)[.04] | | 104(13)[.15] | | | | $v_{15}(A') \delta M$ -O-C | | 49(1.9)[.36] | _ | 60(.04)[,18] | | | | ν ₂₃ (A") τ c-0 | | 38(.15)[1.2] | | 45(.06)[.88] | | | | ν ₂₄ (A") τ M-O | | 16(.09)[1.2] | | 24(1.0)[1.38] | | | | | | | | | ^aCalculated infrared and Raman intensities in km/mol and Å⁴/amu, respectively. ^bData from ref. 24. ^cIn the Raman spectrum of solid COCl₂·SbF₅ two additional bands were observed at 442[8] and 346[15] cm⁻¹ which were of variable intensity and probably do not belong to the adduct (see text). Table 4. Calculated (B3LYP/SBK + (d)) Vibrational Frequencies and Observed Raman Spectra of the COCIF \cdot MF₅ (M = As, Sb) Adducts and their Analyses Based on the Point Groups of the Adducts and the Individual Donor and Acceptor Molecules | _assi | gnments, app | rox mode descript | freq, cm ⁻¹ , intensities | | | | |--------------------|---|---|---|--|------------------------------|---| | MF_5 | COCIF | COCIF-MF ₅ | COC | CIF·AsF ₅ | | CIF-SbF ₅ | | C_{4v} | Cs obsd ^a | Cs | obsd
Ra | calcd ^c
(IR)[Ra] | obsd
Ra | calcd ^c
(IR)[Ra] | | | ν ₁ (A')
1868 | v_i (A') $vc = o$ | 1701[40] | 1826(695)[38] | 1669[8] | 1789(751)[25] | | | v ₂ (A')
1095 | v_2 (A') vcF | 1220[1] | 1167(416)[4]] | 1257(vs) ^b | 1208(412)[2.0] | | ν ₇ (E) | 1070 | $\begin{cases} v_3 (A') \text{ vas } MF_4 \\ v_{16} (A") \text{ vas } MF_4 \end{cases}$ | $\begin{cases} 780[5] \\ 732[5] \end{cases}$ | \[\begin{pmatrix} 735(147)[.17] \\ 736(160)[.06] \end{pmatrix} | 712[2] | $\begin{cases} 667(112)[2.0] \\ 670(126)[.22] \end{cases}$ | | $v_1 \ (A_1)$ | | ν ₄ (A') ν MF' | 742[52] | 743(173)[5.8] | 689[42] | 668(106)[4.0] | | v_2 (A_1) | | v_5 (A') vs MF_4 in phase | 695[100] | 663(2.2)[31] | 651[100] | 621(2.3)[28] | | $v_4 (B_1)$ | ν ₃ (A') 776
ν ₆ (A")
667 | v_6 (A') v CCl v_{17} (A") v_8 MF ₄ out of phase v_{18} (A") δ MO CCl out of | 835[35]
616[16]
580[4] | 781(47)[15]
597(.13)[3.1]
659(8.5)[.32] | 842[21]
603[15]
590[2] | 795(50)[13]
578(.36)[2.6]
660(2.4)[.20] | | V_3 (A_1) | V ₄ (A') 501 | plane V_7 (A') δ MO CCI in plane V_8 (A') δ sciss MF ₄ | 453[16]
401[13] | 520(2.1)[5.2]
404(.01)[1.6] | 470[15]
301[18] | 536(6.8)[3.4]
308(.08)[1.6] | | ν ₈ (E) | | $\begin{cases} v_{19}(A") \ \delta \ FMF_4 \ \text{out of plane} \\ v_9(A') \ \delta \ FMF_4 \ \text{in plane} \end{cases}$ | $\begin{cases} 390[4] \\ 382[2] \end{cases}$ | \[\frac{380(48)[.25]}{379(43)\{.26]} \] | 275[3] | $\begin{cases} 287(53)[.30] \\ 285(49)[.29] \end{cases}$ | | $v_6 (B_2)$ | ν ₅ (A') 415 | $ν_{i0}$ (A') δ sciss ClCF $ν_{11}$ (A') δ umbrella MF ₄ | 340[9]
325[3] | 420(.29)[2.3]
327(125)[1.9] | 337[3]
265[2] | 429(1.9)[2.4]
264(134)[.27] | | ν ₉ (E) | | $ \begin{cases} v_{12}(A') \ \delta \ \text{ as } MF_4 \text{ in plane} \\ v_{20}(A'') \ \delta \ \text{as } MF_4 \text{ in plane} \end{cases} $ | $\begin{cases} 306[10] \\ 233[5] \end{cases}$ | { 276(.83)[1.0] 278(.69)[.86] | 240[8] | $\begin{cases} 223(.98)[.79] \\ 232(.77)[.41] \end{cases}$ | | $v_5(B_1)$ | | $V_{21}(A'')$ δ wag COCIF
$V_{13}(A')$ δ rock COCIF
$V_{22}(A'')$ δ pucker MF ₄
V_{14} (A') v M-O
$V_{15}(A')$ δ M-O-C
$V_{23}(A'')$ τ c=0
$V_{24}(A'')$ τ M-O | 197[4]
148[17] | 164(.12)[.45]
137(1.2)[.13]
114(0)[0]
76(15)[.21]
53(1.6)[.31]
36(.13)[1.1]
28(.02)[.51] | 198[20] | 165(.13)[.73]
146(5.5)[.60]
115(0)[0]
109(14)[.20]
62(.05)[.27]
41(.06)[.64]
32(.01)[.81] | ^aData from ref 2.4. ^bFrequency and intensity from the infrared spectrum. ^cThe listed calculated frequencies are for the isomers in which the fluorine atom of the COClF unit is pointed toward MF_5 . Table 5. Calculated (B3LYP/SBK+(d)) Vibrational Frequencies and Literature aRaman Spectra of the $COF_2 \cdot MF_5$ (M = As, Sb) Adducts and their Analyses. | obsd
Ra
1770[9]
1436[4]
716[19] | calcd
(IR)[Ra]
1866(753)[13]
1360(398)[3.3] | |---|--| | Ra
1770[9]
1436[4] | (IR)[Ra]
1866(753)[13] | | 1436[4] | | | 716[19] | | | | $\int 669(108)[2.0]$ | | 701[29] | 669(108)[.12] | | 673[82]
658[100] | 671(98)[4.1]
622(2.2)[23] | | 600[23]
774[6] | 1013(26)[10]
578(.64)[2.6]
757(43)[.52] | | coincid. ^d
303[28] | 634(16)[3.3]
309(.09)[1.6] | | 285[5] | 288(52)[.19] | | | 285(50)[.21] | | 606 sh
265[14] | 581(3.0)[1.0]
268(101)[.19] | | 226[14] | $\int 222(2.8)[.98]$ | | 242[14] | 232(1.3)[.69] | | 194[19]
———————————————————————————————————— | 167(.04)[.37]
163(20)[.17]
112(0)[0]
115(7.9)[.09]
65(0)[.03]
47(0)[.40]
34(.20)[.25] | | | 701[29] 673[82] 658[100] 1050[28] 600[23] 774[6] coincid. ^d 303[28] 285[5] 606 sh 265[14] 226[14] 242[14] | ^aThe observed frequencies were taken from ref 8. ^bData from ref 24. ^cWeak bands shown in the Figures, but not listed in the tables of ref 8. ^dCoincidence with either 658[100] or 673[82]. ^cFigure 3 of ref 8 shows weak bands in the 380 cm⁻¹ region, which might also belong to v_{19} and v_{9} of the adduct. # **DIAGRAM CAPTIONS** - Figure 1. Raman spectra of solid COCl₂•AsF₅ (upper trace) and COCl₂•SbF₅ (lower trace) recorded at -130 °C. - Figure 2. Raman spectra of solid COClF•AsF₅ (upper trace) and COClF•SbF₅ (lower trace) recorded at -130 °C. - Figure 3. Geometries optimized at the B3LYP/SBK +(d) level for $COCl_2 \cdot MF_5$, $COClF \cdot MF_5$ and $COF_2 \cdot MF_5$ where M = As(Sb). FIGURE 2